Simultaneous statistical inference problems are at the basis of almost any scientific discovery process. We consider a class of simultaneous inference problems that are invariant under permutations, meaning that all components of the problem are oblivious to the labelling of the multiple instances under consideration. For any such problem we identify the optimal solution which is itself permutation invariant, the most natural condition one could impose on the set of candidate solutions. Interpreted differently, for any possible value of the parameter we find a tight (non-asymptotic) lower bound on the statistical performance of any procedure that obeys the aforementioned condition. By generalizing the standard decision theoretic notions of permutation invariance, we show that the results apply to a myriad of popular problems in simultaneous inference, so that the ultimate benchmark for each of these problems is identified. The connection to the nonparametric empirical Bayes approach of Robbins is discussed in the context of asymptotic attainability of the bound uniformly in the parameter value.
翻译:同时的统计推论问题是几乎所有科学发现过程的基础。我们考虑的是一组同时发生的推论问题,这些问题在变异状态下是无差别的,这意味着问题的所有组成部分都忽略了所考虑的多种情况标签。对于任何这类问题,我们确定最佳的解决方法是变异的,最自然的条件可以强加给一套候选解决办法。不同的解释是,对于参数的任何可能值,我们发现在任何符合上述条件的程序的统计性能上存在着较紧(非被动的)约束程度较低。我们通过将标准决定的变异的理论概念概括化,我们表明,结果适用于众多同时推论的流行问题,从而确定了这些问题中每一个问题的最终基准。在参数值中,与罗宾斯的非参数性实验性海湾方法的联系,是在参数统一性约束性可无差别地实现的背景下讨论的。