Many factors have separately shown their effectiveness on improving multilingual ASR. They include language identity (LID) and phoneme information, language-specific processing modules and cross-lingual self-supervised speech representation, etc. However, few studies work on synergistically combining them to contribute a unified solution, which still remains an open question. To this end, a novel view to incorporate hierarchical information path LUPET into multilingual ASR is proposed. The LUPET is a path encoding multiple information in different granularity from shallow to deep encoder layers. Early information in this path is beneficial for deriving later occurred information. Specifically, the input goes from LID prediction to acoustic unit discovery followed by phoneme sharing, and then dynamically routed by mixture-of-expert for final token recognition. Experiments on 10 languages of Common Voice examined the superior performance of LUPET. Importantly, LUPET significantly boosts the recognition on high-resource languages, thus mitigating the compromised phenomenon towards low-resource languages in a multilingual setting.
翻译:暂无翻译