This paper presents Slime, a novel non-deep image matching framework which models the scene as rough local overlapping planes. This intermediate representation sits in-between the local affine approximation of the keypoint patches and the global matching based on both spatial and similarity constraints, providing a progressive pruning of the correspondences, as planes are easier to handle with respect to general scenes. Slime decomposes the images into overlapping regions at different scales and computes loose planar homographies. Planes are mutually extended by compatible matches and the images are split into fixed tiles, with only the best homographies retained for each pair of tiles. Stable matches are identified according to the consensus of the admissible stereo configurations provided by pairwise homographies. Within tiles, the rough planes are then merged according to their overlap in terms of matches and further consistent correspondences are extracted. The whole process only involves homography constraints. As a result, both the coverage and the stability of correct matches over the scene are amplified, together with the ability to spot matches in challenging scenes, allowing traditional hybrid matching pipelines to make up lost ground against recent end-to-end deep matching methods. In addition, the paper gives a thorough comparative analysis of recent state-of-the-art in image matching represented by end-to-end deep networks and hybrid pipelines. The evaluation considers both planar and non-planar scenes, taking into account critical and challenging scenarios including abrupt temporal image changes and strong variations in relative image rotations. According to this analysis, although the impressive progress done in this field, there is still a wide room for improvements to be investigated in future research.
翻译:暂无翻译