Dense prediction tasks are common for 3D point clouds, but the uncertainties inherent in massive points and their embeddings have long been ignored. In this work, we present CUE, a novel uncertainty estimation method for dense prediction tasks in 3D point clouds. Inspired by metric learning, the key idea of CUE is to explore cross-point embeddings upon a conventional 3D dense prediction pipeline. Specifically, CUE involves building a probabilistic embedding model and then enforcing metric alignments of massive points in the embedding space. We also propose CUE+, which enhances CUE by explicitly modeling crosspoint dependencies in the covariance matrix. We demonstrate that both CUE and CUE+ are generic and effective for uncertainty estimation in 3D point clouds with two different tasks: (1) in 3D geometric feature learning we for the first time obtain wellcalibrated uncertainty, and (2) in semantic segmentation we reduce uncertainty's Expected Calibration Error of the state-of-the-arts by 16.5%. All uncertainties are estimated without compromising predictive performance.


翻译:3D点云的频繁预测任务很常见, 但大型点及其嵌入点所固有的不确定性早已被忽略。 在这项工作中, 我们展示了三D点云中密集预测任务的一种新的不确定性估计方法CUE。 在光学学习的启发下, CUE的关键想法是探索将交叉点嵌入常规的 3D 密度预测管道。 具体地说, CUE 涉及构建一个概率嵌入模型, 然后对嵌入空间中的大点进行量性调整。 我们还提议 CUE+, 通过在变量矩阵中明确建模跨点依赖性来增强 CUE。 我们证明, CUE 和 CUE+ 都具有通用性,并且对于3D点云的不确定性估计有效, 有两个不同的任务:(1) 在 3D 地貌特征学习中,我们第一次获得精确的不确定性, 和 (2) 在语系分割中, 我们将不确定性的预测状态的校准误差减少16.5 %。 所有不确定性都是在不损预测性表现的情况下估计的。</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员