Blending representation learning approaches with simultaneous localization and mapping (SLAM) systems is an open question, because of their highly modular and complex nature. Functionally, SLAM is an operation that transforms raw sensor inputs into a distribution over the state(s) of the robot and the environment. If this transformation (SLAM) were expressible as a differentiable function, we could leverage task-based error signals to learn representations that optimize task performance. However, several components of a typical dense SLAM system are non-differentiable. In this work, we propose gradSLAM, a methodology for posing SLAM systems as differentiable computational graphs, which unifies gradient-based learning and SLAM. We propose differentiable trust-region optimizers, surface measurement and fusion schemes, and raycasting, without sacrificing accuracy. This amalgamation of dense SLAM with computational graphs enables us to backprop all the way from 3D maps to 2D pixels, opening up new possibilities in gradient-based learning for SLAM. TL;DR: We leverage the power of automatic differentiation frameworks to make dense SLAM differentiable.
翻译:在功能上,SLAM是一种将原始传感器输入转化为在机器人和环境状态和环境中分布的原始传感器输入器的行动。如果这种转换(SLAM)作为一种不同的功能可以表现为不同功能,我们可以利用基于任务的错误信号来学习优化任务性能的表示器。然而,典型的密集的SLAM系统的若干组成部分是不可区分的。在这项工作中,我们提出将SLSAM系统作为不同计算图的一种方法,它统一了基于梯度的学习和SLM。我们提出了不同的信任区域优化、地面测量和聚变计划,并在不牺牲准确性的情况下进行射线。这种密集的SLMM与计算图的合并使我们能够从3D地图到2D像素的表示法反向直通,为SLM的梯度学习开辟了新的可能性。TL:我们利用自动区分框架的力量使SLM变密。