One difficulty in using artificial agents for human-assistive applications lies in the challenge of accurately assisting with a person's goal(s). Existing methods tend to rely on inferring the human's goal, which is challenging when there are many potential goals or when the set of candidate goals is difficult to identify. We propose a new paradigm for assistance by instead increasing the human's ability to control their environment, and formalize this approach by augmenting reinforcement learning with human empowerment. This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state. We test our approach against assistance based on goal inference, highlighting scenarios where our method overcomes failure modes stemming from goal ambiguity or misspecification. As existing methods for estimating empowerment in continuous domains are computationally hard, precluding its use in real time learned assistance, we also propose an efficient empowerment-inspired proxy metric. Using this, we are able to successfully demonstrate our method in a shared autonomy user study for a challenging simulated teleoperation task with human-in-the-loop training.
翻译:使用人为代理物进行人类辅助性应用的一个困难在于如何准确协助实现一个人的目标。 现有方法往往依赖于对人的目标作出推断,如果有许多潜在目标,或者当一系列候选目标难以确定,就具有挑战性。 我们提出了一个新的援助模式,通过提高人类控制环境的能力来提高人类控制环境的能力,并通过增强人的权能来使这种方法正规化。这一任务不可知性目标维护了个人的自主性和实现任何最终状态的能力。我们根据目标推断来测试我们的方法,并突出我们的方法克服了目标模糊或错误区分所产生的失败模式的情景。由于在连续领域评估赋予权力的现有方法在计算上十分困难,无法在实时学习的援助中加以使用,我们还提出了一个高效的增强权能的代用指标。使用这种方法,我们能够成功地在共同的自主用户研究中展示出我们的方法,以模拟的远程合作任务为挑战性,同时进行人际流动培训。