In this paper, we investigate the differentially private estimation of data depth functions and their associated medians. We start with several methods for privatizing depth values at a fixed point, and show that for some depth functions, when the depth is computed at an out of sample point, privacy can be gained for free when $n\rightarrow \infty$. We also present a method for privately estimating the vector of sample depth values, and show that privacy is not gained for free asymptotically. We also introduce estimation methods for depth-based medians for both depth functions with low global sensitivity and depth functions with only highly probably, low local sensitivity. We provide a general Theorem (Lemma 1) which can be used to prove consistency of an estimator produced by the exponential mechanism, provided the asymptotic cost function is uniquely minimized and is sufficiently smooth. We introduce a general algorithm to privately estimate minimizers of a cost function which has low local sensitivity, but high global sensitivity. This algorithm combines propose-test-release with the exponential mechanism. An application of this algorithm to generate consistent estimates of the projection depth-based median is presented. For these private depth-based medians, we show that it is possible for privacy to be free when $n\rightarrow \infty$.
翻译:在本文中, 我们调查对数据深度函数及其相关中位数的不同私人估计。 我们从在固定点将深度值私有化的几种方法开始, 并显示, 对于某些深度函数, 当深度在抽样点外计算时, 只要美元为n\ rightrowr\ infty $, 就可以免费获得隐私。 我们还提出一种私下估计样本深度值矢量的方法, 并表明对于免费的本地敏感度低但全球敏感度高的成本函数, 不能获得隐私。 我们还引入了基于深度的中位值的深度中位值的估算方法。 我们使用这一算法来对基于全球的低敏感度和深度函数进行一致的估算, 本地敏感度低。 我们提供了一种通用Theorem( Lemma 1), 可以用来证明指数机制产生的估计值的一致性, 只要最小化成本功能是最小的, 并且足够顺利。 我们引入了一种普通算法, 将成本功能降低到本地的低敏感度, 但全球敏感度。 这个算法将提议- 和指数机制结合起来。 应用这一算法来对基于深度的中位的中位值作出一致的估算。 当我们展示它时, 以自由的中位中位时, 。