A profound challenge for A-Life is to construct agents whose behavior is 'life-like' in a deep way. We propose an architecture and approach to constructing networks driving artificial agents, using processes analogous to the processes that construct and sculpt the brains of animals. Furthermore the instantiation of action is dynamic: the whole network responds in real-time to sensory inputs to activate effectors, rather than computing a representation of the optimal behavior and sending off an encoded representation to effector controllers. There are many parameters and we use an evolutionary algorithm to select them, in the context of a specific prey-capture task. We think this architecture may be useful for controlling small autonomous robots or drones, because it allows for a rapid response to changes in sensor inputs.
翻译:A-Life面临的一个深刻挑战是,构建行为“像生命一样”的代理人。我们提出一个建筑结构和方法,用类似于构建和雕塑动物大脑的过程的流程来构建人造制剂的网络。此外,行动的即时反应是动态的:整个网络实时响应感官输入以激活效应器,而不是计算最佳行为的表现,并发送编码代表器给电动控制器。有许多参数,我们使用进化算法在特定猎物捕捉任务中选择它们。我们认为这一结构可能有益于控制小型自主机器人或无人机,因为它允许对传感器输入的变化作出快速反应。