In perceptual image coding applications, the main objective is to decrease, as much as possible, Bits Per Pixel (BPP) while avoiding noticeable distortions in the reconstructed image. In this paper, we propose a novel perceptual image coding technique, named Perceptual Color Compression (PCC). PCC is based on a novel model related to Human Visual System (HVS) spectral sensitivity and CIELAB Just Noticeable Color Difference (JNCD). We utilize this modeling to capitalize on the inability of the HVS to perceptually differentiate photons in very similar wavelength bands (e.g., distinguishing very similar shades of a particular color or different colors that look similar). The proposed PCC technique can be used with RGB (4:4:4) image data of various bit depths and spatial resolutions. In the evaluations, we compare the proposed PCC technique with a set of reference methods including Versatile Video Coding (VVC) and High Efficiency Video Coding (HEVC) in addition to two other recently proposed algorithms. Our PCC method attains considerable BPP reductions compared with all four reference techniques including, on average, 52.6% BPP reductions compared with VVC (VVC in All Intra still image coding mode). Regarding image perceptual reconstruction quality, PCC achieves a score of SSIM = 0.99 in all tests in addition to a score of MS-SSIM = 0.99 in all but one test. Moreover, MOS = 5 is attained in 75% of subjective evaluation assessments conducted.


翻译:在感知图像编码应用程序中,主要目标是尽可能减少Bits Per Pixel(BPP),同时避免在重建后的图像中出现明显扭曲现象。在本文中,我们建议采用新型的感知图像编码技术,名为“感知色彩压缩 ” (PCC) 。PCC基于与人类视觉系统(HVS)光谱敏感度和CIELAB唯一可感知的色彩差异(JNCD)有关的新型模型。我们利用这一模型,利用HVS无法在概念上区分非常相近波长波段的光子(例如,区分非常相似的特定颜色或不同颜色的非常相似的阴影)。提议的PCCIM技术可以与RGB(4:4:4)使用不同深度和空间分辨率的图像数据。在评估中,我们将拟议的PCC技术与一套参考方法(包括VSVC)和高效率视频编码(HEVC),除了最近提出的另外两个算法外,我们PCC方法在VS质量评估中取得了相当的降低,在VC中,在VC的所有比例测试中,在VC中,在BPPS级中实现了所有4级的降低。

0
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
19+阅读 · 2021年4月4日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
168+阅读 · 2020年4月26日
【SIGMOD2020-腾讯】Web规模本体可扩展构建
专知会员服务
30+阅读 · 2020年4月12日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
32+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年7月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员