This paper presents a systematic study the effects of compression on hyperspectral pixel classification task. We use five dimensionality reduction methods -- PCA, KPCA, ICA, AE, and DAE -- to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel-based classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel-based classification. We use three high-resolution hyperspectral image datasets, representing three common landscape units (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rate is more than 90\% those methods showed lower classification scores. AE and DAE methods post better classification accuracy at 95\% compression rate, however decreasing again at 97\%, suggesting a sweet-spot at the 95\% mark. Our results demonstrate that the choice of a compression method with the compression rate are important considerations when designing a hyperspectral image classification pipeline.
翻译:本文介绍了压缩对超光谱像素分类任务的影响的系统研究。我们使用五维分解方法 -- -- CPA、KPA、ICA、ACA、AE和DAE -- -- 压缩301维超光谱像素。压缩像素随后被用来进行像素类分类。像素分类法以及压缩方法、压缩率和重建错误为研究压缩方法是否适合像素类分类任务提供了一个新的透镜。我们使用三种高分辨率超光谱图像数据集,代表多伦多大学遥感和空间生态系统建模实验室收集的三个共同景观单位(即城市、过渡性郊区和森林)。我们发现,五氯苯、KPA和ICA的信号重建能力更大;然而,当压缩率与压缩方法相比超过90 ⁇,这些方法的分类分数较低时,AE和DAE方法将更精确的分级定为95 ⁇ 压缩率,但降为97 ⁇,在95 ⁇ 标记处建议选取一个甜点。我们的结果显示,在设计高光谱图像时,选择带有压缩率的压缩率是重要因素。