With the increase of pages and buttons in real-world applications, industrial-scale recommender systems face multi-domain and multi-task challenges. On the one hand, users and items in multiple domains suffer inconsistent distributions. On the other hand, multiple tasks have distinctive sparsity and interdependence. Personalization modeling is the core of recommender systems. Accurate personalization estimation helps to capture the degree of user preference for items in different situations, especially in the case of multiple domains and multiple tasks. In multi-task and multi-domain recommendation, how to introduce personalized priors into the model in the right place and in the right way is crucial. In this paper, we propose a plug-and-play Parameter and Embedding Personalized Network (PEPNet) for multi-task recommendation in the multi-domain setting. PEPNet takes features with strong bias as input and dynamically acts on the bottom-layer embeddings or the top-layer DNN hidden units in the model through the gate mechanism. By mapping significant priors to scaling weights ranging from 0 to 2, PEPNet introduces both parameter personalization and embedding personalization. Embedding Personalized Network (EPNet) selects and aligns embeddings with different semantics under multiple domains. Parameter Personalized Network (PPNet) influences DNN parameters to balance interdependent targets in multiple tasks. To further adapt to the characteristics of the model, we have made corresponding engineering optimizations on the Embedding and DNN parameter update strategies. We have deployed the model in Kuaishou and Kuaishou Express apps, serving over 300 million daily users. Both online and offline experiments have demonstrated substantial improvements in multiple metrics. In particular, we have seen a more than 1\% online increase in three major domains.


翻译:在现实世界应用程序中,随着页面和按钮的增加,工业规模推荐人系统面临多重任务和多重任务的挑战。一方面,多个领域的用户和项目分布不均。另一方面,多重任务具有独特的广度和相互依存性。个性化模型是推荐人系统的核心。精确的个人化估计有助于捕捉不同情况下项目用户偏好的程度,特别是在多个域和多重任务的情况下。在多任务和多任务中,工业规模推荐人系统面临多重任务和多任务的挑战。在多任务和多任务中,如何在模型中引入个性化前缀,在正确的地点和正确的方式中,如何将个人化前缀引入个人化前缀。在本文件中,我们提出插插插插插和嵌入个人化网络的多任务(PEPNetNet ) 。 PEPNet 具有强烈的偏差特征,在底层嵌入或顶级模型 DNNNW 的D隐藏单元中,通过门机制,在模型中,在模型中进一步调整前置重度,从0到2, PEPadad 直线 直径直径直径直径直径直径直径直径直径对网络服务器上,在个人端网络服务器上,在个人网络上,在个人端网络服务器上,在个人端服务器上,在个人端网络上,在个人服务器上,在服务器上,在服务器上进行自我定位上显示个人化。

2
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员