Reliable communication over a discrete memoryless channel with the help of a relay has aroused interest due to its widespread applications in practical scenarios. By considering the system with a mismatched decoder, previous works have provided optimization models to evaluate the mismatch capacity in these scenarios. The proposed models, however, are difficult due to the complicated structure of the mismatched decoding problem with the information flows in hops given by the relay. Existing methods, such as the grid search, become impractical as they involve finding all roots of a nonlinear system, with the growing size of the alphabet. To address this problem, we reformulate the max-min optimization model as a consistent maximization form, by considering the dual form of the inner minimization problem and the Lagrangian with a fixed multiplier. Based on the proposed formulation, an alternating maximization framework is designed, which provides the closed-form solution with simple iterations in each step by introducing a suitable variable transformation. The effectiveness of the proposed approach is demonstrated by the simulations over practical scenarios, including Quaternary and Gaussian channels. Moreover, the simulation results of the transitional probability also shed light on the promising application attribute to the quantizer design in the relay node.
翻译:暂无翻译