Enforcing safety on precise trajectory tracking is critical for aerial robotics subject to wind disturbances. In this paper, we present a learning-based safety-preserving cascaded quadratic programming control (SPQC) for safe trajectory tracking under wind disturbances. The SPQC controller consists of a position-level controller and an attitude-level controller. Gaussian Processes (GPs) are utilized to estimate the uncertainties caused by wind disturbances, and then a nominal Lyapunov-based cascaded quadratic program (QP) controller is designed to track the reference trajectory. To avoid unexpected obstacles when tracking, safety constraints represented by control barrier functions (CBFs) are enforced on each nominal QP controller in a way of minimal modification. The performance of the proposed SPQC controller is illustrated through numerical validations of (a) trajectory tracking under different wind disturbances, and (b) trajectory tracking in a cluttered environment with a dense time-varying obstacle field under wind disturbances.
翻译:精确轨迹跟踪的安全性对受风扰扰的空中机器人至关重要。 本文介绍了一种基于学习的安全保存级联二次方程式控制(SPQC),用于在风扰动下安全轨迹跟踪。 SPQC控制器由一名职位级控制器和一名姿态级控制器组成。 Gossian Procles(GPs)用来估计风扰动造成的不确定性,然后一个名义性的 Lyapunov 级联二次方程式控制器(QP) 用于跟踪参考轨迹。 为了避免在跟踪时出现意外障碍,对每个名义的QP控制器实施控制屏障(CBFs)代表的安全限制,但需尽可能小的修改。 拟议的SPQC控制器的性能通过下列数字验证加以说明:(a) 在不同风扰动下的轨迹跟踪,以及(b) 在风扰动下密集时间变化障碍场的封闭环境中的轨迹跟踪。