We consider tracking adversarial targets in a delayed time-varying linear system with adversarial disturbances and loss functions, which significantly generalizes earlier work. To this end, we develop three techniques that each could be of independent interest. First, we propose a black-box reduction from adversarial tracking control to strongly adaptive online learning with memory. Any solution to the latter translates to a tracking controller that pursues the best action on any time interval. Second, for the resulting online learning problem we develop a novel approach that further adapts to the observed gradients. Third, we propose a new algorithm for unconstrained online linear optimization: for all (unknown) $T\in\mathbb{N}_+$, the cumulative loss and movement on the time horizon $[1:T]$ is upper-bounded by a user-specified constant. Combining these individual techniques, we propose a tracking controller with a sensible performance guarantee even when the adversarial target has a large range of movement.
翻译:我们考虑在一个有对抗性扰动和损失功能的延迟时间变化线性系统中跟踪对抗性目标,这大大概括了先前的工作。 为此,我们开发了三种技术,每种技术都可能具有独立的兴趣。 首先,我们提议从对抗性跟踪控制减少黑盒,到具有记忆的高度适应性在线学习。 后者的任何解决方案都转化为追踪控制器,在任何时间间隔内追求最佳行动。 其次,对于由此产生的在线学习问题,我们开发了一种新办法,进一步适应观察到的梯度。 第三,我们提出了一种不加限制的在线线性优化的新算法:对于所有(未知的) $T\in\mathbb{N ⁇ $, 时间范围内的累积损失和移动 $$( $1:T) 由用户指定的常数以上限。 合并这些个别技术,我们提议一个追踪控制器,有合理的性能保证,即使对抗性能目标具有很大的移动范围。