Weighted finite automata (WFAs) have been widely applied in many fields. One of the classic problems for WFAs is probability distribution estimation over sequences of discrete symbols. Although WFAs have been extended to deal with continuous input data, namely continuous WFAs (CWFAs), it is still unclear how to approximate density functions over sequences of continuous random variables using WFA-based models, due to the limitation on the expressiveness of the model as well as the tractability of approximating density functions via CWFAs. In this paper, we propose a nonlinear extension to the CWFA model to first improve its expressiveness, we refer to it as the nonlinear continuous WFAs (NCWFAs). Then we leverage the so-called RNADE method, which is a well-known density estimator based on neural networks, and propose the RNADE-NCWFA model. The RNADE-NCWFA model computes a density function by design. We show that this model is strictly more expressive than the Gaussian HMM model, which CWFA cannot approximate. Empirically, we conduct a synthetic experiment using Gaussian HMM generated data. We focus on evaluating the model's ability to estimate densities for sequences of varying lengths (longer length than the training data). We observe that our model performs the best among the compared baseline methods.


翻译:在许多领域广泛应用了加权自成一体变量(WFAs),WFAs的典型问题之一是对离散符号序列的概率分布估计。虽然WFAs已经扩展,以处理连续自成一体的输入数据,即连续自成一体的WFAs(CWFAs),但由于模型的清晰度有限,而且通过自成一体的CWFAs的接近密度函数的可移动性也有限,因此仍然不清楚如何利用以WFA为基础的模型(WFAs)对连续随机变量序列的密度函数进行大致估计。在本文中,我们提议对CWFA模型进行非线性扩展,以首先改进它的清晰度,我们称之为非线性连续自成一体的WFAs(CWCFAs),然后我们利用所谓的RNADE方法,这是以神经网络为基础的一个广为人知的密度估计器。RNADE-NCFAFA模型通过设计对密度函数进行一个密度函数。我们表明,这个模型比高估量的HMM模型的长度模型更清晰,而我们用高估测测测测测测测测测了HMMA的模型的数据。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月11日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员