This paper presents a robust end-to-end method for sports cameras extrinsic parameters optimization using a novel evolution strategy. First, we developed a neural network architecture for an edge or area-based segmentation of a sports field. Secondly, we implemented the evolution strategy, which purpose is to refine extrinsic camera parameters given a single, segmented sports field image. Experimental comparison with state-of-the-art camera pose refinement methods on real-world data demonstrates the superiority of the proposed algorithm. We also perform an ablation study and propose a way to generalize the method to additionally refine the intrinsic camera matrix.
翻译:本文介绍了使用新的进化战略优化体育摄影机外部参数的稳健端对端方法。 首先,我们开发了运动场边缘或区域分割的神经网络结构。 其次,我们实施了进化战略,目的是根据单一的、分块的体育场图像完善外部摄影机参数。 实验性比较与最先进的摄影机相比,为真实世界数据提供了完善的方法。 我们还进行了一项减缩研究,并提出了一种方法,将这种方法加以推广,以进一步完善内在的摄影机矩阵。