This study offers a revolutionary strategy to developing wheelchairs based on the Brain-Computer Interface (BCI) that incorporates Artificial Intelligence (AI) using a The device uses electroencephalogram (EEG) data to mimic wheelchair navigation. Five different models were trained on a pre-filtered dataset that was divided into fixed-length windows using a sliding window technique. Each window contained statistical measurements, FFT coefficients for different frequency bands, and a label identifying the activity carried out during that window that was taken from an open-source Kaggle repository. The XGBoost model outperformed the other models, CatBoost, GRU, SVC, and XGBoost, with an accuracy of 60%. The CatBoost model with a major difference between training and testing accuracy shows overfitting, and similarly, the best-performing model, with SVC, was implemented in a tkinter GUI. The wheelchair movement could be simulated in various directions, and a Raspberry Pi-powered wheelchair system for brain-computer interface is proposed here.
翻译:暂无翻译