Based on the observation that $\mathbb{Q}^{(p-1) \times (p-1)}$ is isomorphic to a quotient skew polynomial ring, we propose a new method for $(p-1)\times (p-1)$ matrix multiplication over $\mathbb{Q}$, where $p$ is a prime number. The main feature of our method is the acceleration for matrix multiplication if the product is skew-sparse. Based on the new method, we design a deterministic algorithm with complexity $O(T^{\omega-2} p^2)$, where $T\le p-1$ is a parameter determined by the skew-sparsity of input matrices and $\omega$ is the asymptotic exponent of matrix multiplication. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity $O^\thicksim(t^{\omega-2}p^2+p^2\log\frac{1}{\nu})$, where $t\le p-1$ is the skew-sparsity of the product and $\nu$ is the probability parameter.
翻译:根据以下观察,$mathbb ⁇ (p-1)\time(p-1) $是同位数的Skew 多元圆环,我们提出了一个美元(p-1) 基数乘以$\mathb ⁇ $(p-1) 美元(p-1) 的新方法。我们的方法的主要特征是如果产品是 skew-sparse, 矩阵乘以加速。根据新的方法,我们设计了一种确定性算法,其复杂性为$O(T ⁇ omega-2}p%2) 美元,其中,$T\le p-1美元是由输入矩阵的Skew-parity 和 $\omega$(pomoga$) 所决定的参数是矩阵乘以纯度表示的乘法。此外,通过引入随机性,我们还提出了一种具有 $@thicksim(t ⁇ ga-2}p2+p ⁇ 2\\\\\log\log\ afra {c{1\ nu}$, 其中,$\\\\\\\\\\\\\\\\\\\ par} 美元是 $的概率值。