We solve the problem of estimating the distribution of presumed i.i.d. observations for the total variation loss. Our approach is based on density models and is versatile enough to cope with many different ones, including some density models for which the Maximum Likelihood Estimator (MLE for short) does not exist. We mainly illustrate the properties of our estimator on models of densities on the line that satisfy a shape constraint. We show that it possesses some similar optimality properties, with regard to some global rates of convergence, as the MLE does when it exists. It also enjoys some adaptation properties with respect to some specific target densities in the model for which our estimator is proven to converge at parametric rate. More important is the fact that our estimator is robust, not only with respect to model misspecification, but also to contamination, the presence of outliers among the dataset and the equidistribution assumption. This means that the estimator performs almost as well as if the data were i.i.d. with density $p$ in a situation where these data are only independent and most of their marginals are close enough in total variation to a distribution with density $p$. We also show that our estimator converges to the average density of the data, when this density belongs to the model, even when none of the marginal densities belongs to it. Our main result on the risk of the estimator takes the form of an exponential deviation inequality which is non-asymptotic and involves explicit numerical constants. We deduce from it several global rates of convergence, including some bounds for the minimax $\mathbb{L}_{1}$-risks over the sets of concave and log-concave densities. These bounds derive from some specific results on the approximation of densities which are monotone, convex, concave and log-concave. Such results may be of independent interest.


翻译:我们解决了估算假设的 i. d. 观察总变差损失的分布问题。 我们的方法以密度模型为基础, 并具有适应性, 足以应对许多不同的模型, 包括一些密度模型, 不存在最大相似性动画( MLE 短时间) 。 我们主要展示了线上密度模型的估测器的特性, 满足形状限制。 我们显示它具有某些相似的最佳性, 与某些全球趋同率相比, 就象 MLE 那样。 我们的方法还基于密度模型中某些特定目标密度的适应性, 并且能够适应很多不同的目标密度。 更重要的是, 我们的估测器不仅具有模型的特性, 而且还具有污染性, 数据集中存在离谱值的离谱性。 也就是说, 估测器可能具有某种相似的优化性, 和 MLEO值的密度, 当这些数据仅独立, 其最边缘值的趋同值的趋同度, 当我们的数据的直径直度的直度, 其直径直值的直系的直径直径直度, 当我们的数据的直系的直径直径直径直系, 直径直系的直到直系的直系的直径直系,, 直系的直系的直系, 我们的直系的直系的直到直系的直系, 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员