We aim to reconstruct the latent space dynamics of high dimensional systems using model order reduction via the spectral proper orthogonal decomposition (SPOD). The proposed method is based on three fundamental steps: in the first, we compress the data from a high-dimensional representation to a lower dimensional one by constructing the SPOD latent space; in the second, we build the time-dependent coefficients by projecting the realizations (also referred to as snapshots) onto the reduced SPOD basis and we learn their evolution in time with the aid of recurrent neural networks; in the third, we reconstruct the high-dimensional data from the learnt lower-dimensional representation. The proposed method is demonstrated on two different test cases, namely, a compressible jet flow, and a geophysical problem known as the Madden-Julian Oscillation. An extensive comparison between SPOD and the equivalent POD-based counterpart is provided and differences between the two approaches are highlighted. The numerical results suggest that the proposed model is able to provide low rank predictions of complex statistically stationary data and to provide insights into the evolution of phenomena characterized by specific range of frequencies. The comparison between POD and SPOD surrogate strategies highlights the need for further work on the characterization of the error interplay between data reduction techniques and neural network forecasts.
翻译:我们的目标是利用光谱正正心分解(SPOD)来重建高维系统的潜在空间动态。拟议方法基于三个基本步骤:首先,我们通过建造SPOD潜层空间,将数据从高维代表压缩到低维代表;第二,我们通过将实现情况(也称为快照)投射到减少的SPOD基础,来建立基于时间的系数,我们通过经常神经网络的辅助,及时了解其演变情况;第三,我们从所学的低维表示法中重建高维数据。拟议方法在两个不同的试验案例上展示,即可压缩的喷气流和称为Madden-Julian观测空间的地球物理问题。我们通过将实现情况(也称为快照)投射到减少SPOD的对应方进行广泛比较,并突出两种方法之间的差异。数字结果表明,拟议的模型能够提供对复杂统计站数据进行低级预测,并提供关于以特定频谱为特征的现象演变过程的洞察。拟议方法展示了POD和减少空间预测技术之间的对比。