Solving high-dimensional partial differential equations is a recurrent challenge in economics, science and engineering. In recent years, a great number of computational approaches have been developed, most of them relying on a combination of Monte Carlo sampling and deep learning based approximation. For elliptic and parabolic problems, existing methods can broadly be classified into those resting on reformulations in terms of $\textit{backward stochastic differential equations}$ (BSDEs) and those aiming to minimize a regression-type $L^2$-error ($\textit{physics-informed neural networks}$, PINNs). In this paper, we review the literature and suggest a methodology based on the novel $\textit{diffusion loss}$ that interpolates between BSDEs and PINNs. Our contribution opens the door towards a unified understanding of numerical approaches for high-dimensional PDEs, as well as for implementations that combine the strengths of BSDEs and PINNs. We also provide generalizations to eigenvalue problems and perform extensive numerical studies, including calculations of the ground state for nonlinear Schr\"odinger operators and committor functions relevant in molecular dynamics.
翻译:解决高维部分差异方程式是经济学、科学和工程学中反复出现的一项挑战。近年来,已经开发了大量的计算方法,其中大多依靠蒙特卡洛取样和深学近似值的结合。对于椭圆形和抛物面问题,现有方法大致可以分为以美元为textit{背对面差异方程式$(BSDEs)和旨在最大限度地减少回归类型$L2$-error($\textit{物理-知情神经网络$,PINNs)为目的的重塑(BSDEs)和旨在最大限度地减少回归类型$L2$-error (BSDEs和PINNs的优势)的方法。在本文中,我们审查了文献,并提出了一种基于新颖的 $\textit{扩散损失} 的方法。对于BSDEs和PINNs之间交错的新的 。我们的贡献打开了统一理解高维度PDEs数字方法的大门,以及实施将BSDEs和PINNs的优势结合起来。我们还对二元值问题进行了概括化,并进行了广泛的数字研究,在地面上进行了广泛的研究,包括计算。Sch\crimericalsuring dridustrusionaldoring pridealdormaldormaldorporpations。