Recently, deep neural network (DNN)-based drug-target interaction (DTI) models were highlighted for their high accuracy with affordable computational costs. Yet, the models' insufficient generalization remains a challenging problem in the practice of in-silico drug discovery. We propose two key strategies to enhance generalization in the DTI model. The first is to predict the atom-atom pairwise interactions via physics-informed equations parameterized with neural networks and provides the total binding affinity of a protein-ligand complex as their sum. We further improved the model generalization by augmenting a broader range of binding poses and ligands to training data. We validated our model, PIGNet, in the comparative assessment of scoring functions (CASF) 2016, demonstrating the outperforming docking and screening powers than previous methods. Our physics-informing strategy also enables the interpretation of predicted affinities by visualizing the contribution of ligand substructures, providing insights for further ligand optimization.
翻译:最近,人们强调了深神经网络(DNN)基于药物目标互动(DTI)模型的高精度和可负担的计算成本。然而,模型的不完全的概括化仍然是硅药物发现实践中一个具有挑战性的问题。我们提出了两个关键战略,以加强DTI模型的概括化。第一个战略是预测原子-原子对齐互动,通过以神经网络为参数的物理知情方程进行参数的预测,并提供蛋白项和综合体的总和结合性。我们进一步改进了模型的概括化,增加了更广泛的捆绑成形和对数据的培训。我们在2016年对评分功能的比较评估中验证了我们的模型Pignet,展示了比以往方法的对接和筛选能力。我们的物理成型战略还能够通过直观地显示离子结构的贡献来解释预测的近感,为进一步优化提供了洞察力。