Non-parametric regression, such as generalized additive models (GAMs), is able to capture complex data dependencies in a flexible, yet interpretable way. However, choosing the format of the additive components often requires non-trivial data exploration. Here, we propose an alternative to GAMs, PrAda-net, which uses a one hidden layer neural network, trained with proximal gradient descent and adaptive lasso. PrAda-net automatically adjusts the size and architecture of the neural network to capture the complexity and structure of the underlying data generative model. The compact network obtained by PrAda-net can be translated to additive model components, making it suitable for non-parametric statistical modelling with automatic model selection. We demonstrate PrAda-net on simulated data, where we compare the test error performance, variable importance and variable subset identification properties of PrAda-net to other lasso-based approaches. We also apply Prada-net to the massive U.K. black smoke data set, to demonstrate the capability of using Prada-net as an alternative to GAMs. In contrast to GAMs, which often require domain knowledge to select the functional forms of the additive components, Prada-net requires no such pre-selection while still resulting in interpretable additive components.
翻译:非参数回归,如通用添加模型(GAMS),能够以灵活、但可解释的方式捕捉到复杂的数据依赖性。然而,选择添加元件的格式往往需要非三维数据勘探。这里,我们提出一个替代GAMS(PrAda-net)的替代方法,即PrAda-net,它使用一个隐蔽的层神经网络,受过精度梯度下降和适应性拉索培训。PrAda-net自动调整神经网络的规模和结构,以捕捉基本数据基因化模型的复杂性和结构。PrAda-net获得的紧凑网络可以转换成添加型元件,使之适合自动选择模型的非参数统计模型。我们在模拟数据上展示PrAda-net(PrAda-net) 的测试错误性能、可变重要性和可变子识别特性与其他以lasso为基础的方法进行比较。我们还将Pradda-net-net-net应用于庞大的U.K.黑烟数据组,以展示使用Prada-net作为GMS的替代品的能力。与GAMs相比,在GAMMS(通常需要通过域域内选择可变的成型的成型的成型版本),而经常要求进行域级的成型号的成型中,而无需的成型号的成型号的成型号的成型号的成型号的成型号的成品。