The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems, but working in infinite dimensional spaces. Dynamic Mode Decomposition and Extended Dynamic Mode Decomposition are amongst the most popular finite dimensional approximation. In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework. To do so, we leverage the RKHS as a suitable space for learning the Koopman dynamics, thanks to its intrinsic finite-dimensional nature, shaped by data. We finally establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions. We provide also simulations for comparison with standard procedures.
翻译:Koopman 操作员是一个数学工具, 允许对非线性系统进行线性描述, 但是在无限的维空间工作。 动态模式分解和扩展动态模式分解是最受欢迎的有限维近光之一。 在本文中, 我们把它们的核心精髓作为同一框架的双重版本, 将其纳入内核框架。 为此, 我们利用RKHS作为学习Koopman动态的适当空间, 因为它具有由数据形成的内在的有限维性。 我们最终在内核方法和Koopman操作员之间建立了牢固的联系, 从而通过 Kernel 函数对后者进行估算。 我们还提供模拟, 以便与标准程序进行比较 。