Integrating coded caching (CC) into multiple-input multiple-output (MIMO) communications may significantly enhance the achievable degrees of freedom (DoF) of the wireless networks. In this paper, we consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx antennas communicates with $K$ users, each with $G$ Rx antennas. In the proposed content-aware MIMO strategy, we carefully adjust the number of users $\Omega$ and the number of parallel streams decoded by each user $\beta$ served in each transmission to maximize the DoF. As a result, we achieve a DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$, where ${\beta \le \mathrm{min}\big(G,\frac{L \binom{\Omega-1}{t}}{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)}$. To prove the achievability of the proposed DoF bound, we provide a novel transmission strategy based on the simultaneous unicasting of multiple data streams. In this strategy, the missing data packets are scheduled such that the number of parallel streams per transmission is maximized while the decodability of all useful terms by each target user is guaranteed. Numerical simulations validate the findings, confirming the enhanced DoF and improved performance of the proposed design.
翻译:暂无翻译