This paper considers the problem of undersampled MRI reconstruction. We propose a novel Transformer-based framework for directly processing signal in k-space, going beyond the limitation of regular grids as ConvNets do. We adopt an implicit representation of k-space spectrogram, treating spatial coordinates as inputs, and dynamically query the sparsely sampled points to reconstruct the spectrogram, i.e. learning the inductive bias in k-space. To strike a balance between computational cost and reconstruction quality, we build the decoder with hierarchical structure to generate low-resolution and high-resolution outputs respectively. To validate the effectiveness of our proposed method, we have conducted extensive experiments on two public datasets, and demonstrate superior or comparable performance to state-of-the-art approaches.
翻译:本文探讨了未充分标本的磁共振成像重建问题。 我们提出一个新的基于变异器的框架,用于直接处理K-空间信号,超越常规网格的限制,如ConvNets所做的那样。 我们采用了K-空间光谱图的隐含表示,将空间坐标作为投入处理,并动态地询问零星抽样点,以重建光谱,即学习K-空间的感应偏差。为了在计算成本与重建质量之间求得平衡,我们建立了具有等级结构的解码器,分别产生低分辨率和高分辨率产出。 为了验证我们拟议方法的有效性,我们对两个公共数据集进行了广泛的实验,并展示了优于或可比于最新方法的绩效。