Dynamic Magnetic Resonance Imaging (dMRI) is widely used to assess various cardiac conditions such as cardiac motion and blood flow. To accelerate MR acquisition, techniques such as undersampling and Simultaneous Multi-Slice (SMS) are often used. Special reconstruction algorithms are needed to reconstruct multiple SMS image slices from the entangled information. Deep learning (DL)-based methods have shown promising results for single-slice MR reconstruction, but the addition of SMS acceleration raises unique challenges due to the composite k-space signals and the resulting images with strong inter-slice artifacts. Furthermore, many dMRI applications lack sufficient data for training reconstruction neural networks. In this study, we propose a novel DL-based framework for dynamic SMS reconstruction. Our main contributions are 1) a combination of data transformation steps and network design that effectively leverages the unique characteristics of undersampled dynamic SMS data, and 2) an MR physics-guided transfer learning strategy that addresses the data scarcity issue. Thorough comparisons with multiple baseline methods illustrate the strengths of our proposed methods.
翻译:广泛使用动态磁共振成像(dMRI)来评估各种心脏状况,如心脏运动和血液流。为了加速MR的获取,经常使用低采样和同声多切技术(SMS),需要特殊的重建算法,以便从缠绕的信息中重建多种SMS图像片。深层学习(DL)方法为单切磁共振重建显示了有希望的结果,但加入SMS加速则由于复合 k-空间信号和由此产生的具有很强的切片的合成K-空间图像而带来独特的挑战。此外,许多DMRI应用缺乏足够的数据来培训重建神经网络。在这个研究中,我们提出了一个新的基于DL的动态SMS重建框架。我们的主要贡献是:(1)数据转换步骤和网络设计相结合,有效地利用了低采样动态SMS数据的独特特征,以及(2)用于解决数据稀缺问题的MR-物理制导导转移学习战略。索罗与多种基线方法的比较显示了我们拟议方法的优势。