We study the problem of computing the vitality with respect to max flow of edges and vertices in undirected planar graphs, where the vitality of an edge/vertex in a graph with respect to max flow between two fixed vertices $s,t$ is defined as the max flow decrease when the edge/vertex is removed from the graph. We show that the vitality of any $k$ selected edges can be computed in $O(kn + n\log\log n)$ worst-case time, and that a $\delta$ additive approximation of the vitality of all edges with capacity at most $c$ can be computed in $O(\frac{c}{\delta}n +n \log \log n)$ worst-case time, where $n$ is the size of the graph. Similar results are given for the vitality of vertices. All our algorithms work in $O(n)$ space.
翻译:我们研究了在未定向平面图中计算边缘和脊椎最大流动的活力问题,在这两个固定的脊椎之间最大流动时,一个边缘/脊椎在图形中的活力被定义为在从图中去除边缘/脊椎时最大流动的最大流量。我们显示,任何所选的K美元边缘的活力可以用美元(kn + n\log\log n)来计算,最坏的情况是美元(kn + nlog\log n),并且可以用美元(c)+n\log\log n)在最坏的情况时段计算出最大流量减少的活力。对于脊椎的活力,我们所有的算法都用美元(n)来计算。