We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points using treatment policies that adapt over time. Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale -- mean outcome under different treatments for each unit and each time -- with minimal assumptions on the adaptive treatment policy. Without any structural assumptions on the counterfactual means, this challenging task is infeasible due to more unknowns than observed data points. To make progress, we introduce a latent factor model over the counterfactual means that serves as a non-parametric generalization of the non-linear mixed effects model and the bilinear latent factor model considered in prior works. For estimation, we use a non-parametric method, namely a variant of nearest neighbors, and establish a non-asymptotic high probability error bound for the counterfactual mean for each unit and each time. Under regularity conditions, this bound leads to asymptotically valid confidence intervals for the counterfactual mean as the number of units and time points grows to $\infty$.
翻译:我们考虑研究后对按顺序设计的实验的统计推断,即利用随时间变化的治疗政策为多个单位分配多个时间点的治疗。我们的目标是为最小规模反事实平均值提供推断保证 -- -- 每个单位和每个时间的不同治疗下的平均结果 -- -- 对适应性治疗政策作出最低假设。在对反事实手段不作任何结构性假设的情况下,这项具有挑战性的任务由于比观察的数据点更多的未知因素而无法进行。为了取得进展,我们为反事实手段引入了一个潜在要素模型,作为非线性混合效应模型和先前工作中考虑的双线性潜在要素模型的非参数性概括。关于估算,我们使用非参数方法,即最近的邻居变量,并设定一个非意外性高概率错误,为每个单位和每个时间点的反事实平均值捆绑起来。在正常条件下,这必然导致对反事实手段的信任度断断时,单位和时间点数增长到1美元/infty。