This study addresses a fundamental, yet overlooked, gap between standard theory and empirical modelling practices in the OLS regression model $\boldsymbol{y}=\boldsymbol{X\beta}+\boldsymbol{u}$ with collinearity. In fact, while an estimated model in practice is desired to have stability and efficiency in its "individual OLS estimates", $\boldsymbol{y}$ itself has no capacity to identify and control the collinearity in $\boldsymbol{X}$ and hence no theory including model selection process (MSP) would fill this gap unless $\boldsymbol{X}$ is controlled in view of sampling theory. In this paper, first introducing a new concept of "empirically effective modelling" (EEM), we propose our EEM methodology (EEM-M) as an integrated process of two MSPs with data $(\boldsymbol{y^o,X})$ given. The first MSP uses $\boldsymbol{X}$ only, called the XMSP, and pre-selects a class $\scr{D}$ of models with individually inefficiency-controlled and collinearity-controlled OLS estimates, where the corresponding two controlling variables are chosen from predictive standard error of each estimate. Next, defining an inefficiency-collinearity risk index for each model, a partial ordering is introduced onto the set of models to compare without using $\boldsymbol{y^o}$, where the better-ness and admissibility of models are discussed. The second MSP is a commonly used MSP that uses $(\boldsymbol{y^o,X})$, and evaluates total model performance as a whole by such AIC, BIC, etc. to select an optimal model from $\scr{D}$. Third, to materialize the XMSP, two algorithms are proposed.


翻译:本研究解决了OLS回归模型{Boldsymbol{y{boldsymbol{X\beta}boldsymbol{u}$(Collineity)中标准理论与经验建模做法之间的根本但被忽视的差距。 事实上,虽然在实际中估计的模型在“个人OLS估计”中希望具有稳定性和效率, $\boldsymol{X} 本身没有能力识别和控制美元(Boldsybol{X}$) 和包括模型选择过程(MSP)在内的理论将填补这一差距, 除非在取样理论中控制$\boldsymbol{X}$。 在本文中,首先引入一个新的“流行有效的建模”(EEM)概念,我们提出我们的EEM方法(EM-M) 是一个集成数据(\boldsybol{ylsol{y} $(美元,X}美元) 本身的模型, 包括模型选择(MSPyboldsy{X} 的模型, 只有$(Mslationslate) commlational deal deal) commlationslation a deal dislational disl) a listal dislationslational dislational dislationslationslationslations a.

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
0+阅读 · 2023年3月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员