Instruction tuning data is essential for training the Multimodal Large Language Models (MLLMs). However, the creation of high-quality instruction tuning data presents significant challenges. Prior methods that depended on GPT-4 for data generation were not only costly but also lacked satisfactory performance in complex tasks (i.e., grounding-based reasoning tasks). To address these issues, we developed an innovative data generation pipeline, Genixer, to generate various high-quality instruction tuning data, including nine representative tasks, e.g., Common VQA, REC, REG, and PointQ. Specifically, Genixer provides a unified solution with four key steps for alleviating the difficulty of data generation: (i) instruction data collection, (ii) instruction template design, (iii) empowering MLLM, and (iv) data generation and filtering. Subsequently, the superior qualitative results of our Genixer demonstrate that current MLLMs have a strong potential to evolve into powerful data generators. Additionally, to validate the efficacy of generated data quantitatively, we add the instruction tuning data produced by Genixer into the training of two representative MLLMs and observe the consistent improvements on various VQA tasks and multimodal benchmarks.
翻译:暂无翻译