In a minimum $p$ union problem (Min$p$U), given a hypergraph $G=(V,E)$ and an integer $p$, the goal is to find a set of $p$ hyperedges $E'\subseteq E$ such that the number of vertices covered by $E'$ (that is $|\bigcup_{e\in E'}e|$) is minimized. It was known that Min$p$U is at least as hard as the densest $k$-subgraph problem. A question is: how about the problem in some geometric settings? In this paper, we consider the unit square Min$p$U problem (Min$p$U-US) in which $V$ is a set of points on the plane, and each hyperedge of $E$ consists of a set of points in a unit square. A $(\frac{1}{1+\varepsilon},4)$-bicriteria approximation algorithm is presented, that is, the algorithm finds at least $\frac{p}{1+\varepsilon}$ unit squares covering at most $4opt$ points, where $opt$ is the optimal value for the Min$p$U-US instance (the minimum number of points that can be covered by $p$ unit squares).
翻译:在至少1美元工会问题中(最低1美元),考虑到一个高压G=(V,E)美元和整价美元的问题,目标是找到一套美元超级格($E”=(subseeteqe)E$)的一套美元超级格(美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元),以便尽可能减少美元(美元=美元=美元=美元=美元=美元=美元)所覆盖的顶点数。据了解,美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=单位正方位数=美元=美元=美元=美元=单位=美元=美元=美元=美元=美元=美元=单位方位数=美元=美元=美元=美元=美元=美元=单位方位数=美元=美元=美元=单位方方方方方方值中,最高方值为4美元=美元=单位方值=美元=美元=美元=美元=美元=最高方值=单位方值=美元=美元=美元=美元=美元=美元=单位方值=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=单位方位方位方位方值中方值=单位值=最高方值=单位值=最高方值=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=单位方值中方值=单位方值中方值中方值中方值中方值中方值中方值中方值中方值中方值=单位值=单位值=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=单位值中方值=单位值=单位值=单位值=单位值=单位值=单位值=单位值=单位值=