We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost $k$-cycle free graphs, for any constant $k\geq 4$. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many $4$- or $5$-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with $m^{1+o(1)}$ preprocessing time and $m^{o(1)}$ query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only $3-\epsilon$ factors were conditionally ruled out (P\u{a}tra\c{s}cu, Roditty, and Thorup; FOCS 2012). We prove that no $O(1)$ approximations are possible, assuming the $3$-SUM or APSP conjectures. In particular, we prove that $k$-approximations require $\Omega(m^{1+1/ck})$ time, which is tight up to the constant $c$. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The $4$-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or even linear-time algorithm for detecting a $4$-cycle in a graph. We prove that $\Omega(m^{1.1194})$ time is needed for $k$-cycle detection for all $k\geq 4$, unless we can detect a triangle in $\sqrt{n}$-degree graphs in $O(n^{2-\delta})$ time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms.


翻译:我们提出了一个在图表中有效删除几乎所有短周期的新技术。 因此, 三角发现问题即使在几乎K美元周期免费的图表中, 对于任何恒定的 $k\ geq 4 美元 4 美元 。 三角发现位于P 中许多条件下下限的底部, 主要是远程计算问题, 在最坏的情况下存在许多 4 美元 或 5 美元的周期是解决重大未决问题的障碍。 接近的难度 : 在预处理时间和 $m* 美元周期免费图表中, 三角发现问题并不容易发生。 预处理时间和 $美元 美元 的直线调时间和 $@ o} 美元 的直线调时间 。 具体来说, 具有这种理想时间框架的现有算法仅能达到超常态的近值, 而只有 3\ lic\ lical=troa 4, licaltial listal exmols a.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年3月3日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员