We consider additive Schwarz methods for boundary value problems involving the $p$-Laplacian. While the existing theoretical estimates for the convergence rate of the additive Schwarz methods for the $p$-Laplacian are sublinear, the actual convergence rate observed by numerical experiments is linear. In this paper, we close the gap between these theoretical and numerical results; we prove the linear convergence of the additive Schwarz methods for the $p$-Laplacian. The linear convergence of the methods is derived based on a new convergence theory written in terms of a distance-like function that behaves like the Bregman distance of the convex energy functional associated to the problem. The result is then further extended to handle variational inequalities involving the $p$-Laplacian as well.
翻译:我们考虑Schwarz的添加法,以解决涉及美元-拉普拉西亚的边界价值问题。虽然目前对美元-拉普拉西亚的添加法Schwarz方法的趋同率的理论估计是次线性,但数字实验观察到的实际趋同率是线性。在本文中,我们缩小了这些理论结果与数字结果之间的差距;我们证明了美元-拉普拉西亚的添加法Schwarz方法的线性趋同。这些方法的线性趋同是根据以类似距离的功能写成的一种新的趋同理论得出的,这种功能的行为方式类似于与问题相关的锥形能量功能的布雷格曼距离。结果随后进一步扩展,以处理涉及美元-拉普拉西亚的变异性不平等。