Stochastic gradient descent (SGD) gives an optimal convergence rate when minimizing convex stochastic objectives $f(x)$. However, in terms of making the gradients small, the original SGD does not give an optimal rate, even when $f(x)$ is convex. If $f(x)$ is convex, to find a point with gradient norm $\varepsilon$, we design an algorithm SGD3 with a near-optimal rate $\tilde{O}(\varepsilon^{-2})$, improving the best known rate $O(\varepsilon^{-8/3})$ of [18]. If $f(x)$ is nonconvex, to find its $\varepsilon$-approximate local minimum, we design an algorithm SGD5 with rate $\tilde{O}(\varepsilon^{-3.5})$, where previously SGD variants only achieve $\tilde{O}(\varepsilon^{-4})$ [6, 15, 33]. This is no slower than the best known stochastic version of Newton's method in all parameter regimes [30].


翻译:软性梯度下降(SGD) 在最小化二次曲线目标时, 给出最佳趋同率 $f(x) 美元。 然而, 在使梯度小化方面, 原始 SGD 并没有给出最佳率, 即使$f(x) 美元是 convex 。 如果 $f(x) 美元是 convex, 我们设计了一个具有梯度规范的点 $\ varepsilon{O} (\ varepsilon}-2} 美元, 提高已知的美元[18] 的最佳率 。 如果 $f(x) 美元是非convex, 要找到其 $\ varepslon $- pappoint 当地最低值, 我们设计了一个具有 $\ tilde{O} (\ varepslon}- 3. } 美元的SGD3 3, 以前SGD变量仅达到 $\\\ {O} (\ varepslon_4} $ [6,, 15, 33] 将所有已知的Restsmissionsmation 最慢的S.

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员