High-dimensional signal recovery of standard linear regression is a key challenge in many engineering fields, such as, communications, compressed sensing, and image processing. The approximate message passing (AMP) algorithm proposed by Donoho \textit{et al} is a computational efficient method to such problems, which can attain Bayes-optimal performance in independent identical distributed (IID) sub-Gaussian random matrices region. A significant feature of AMP is that the dynamical behavior of AMP can be fully predicted by a scalar equation termed station evolution (SE). Although AMP is optimal in IID sub-Gaussian random matrices, AMP may fail to converge when measurement matrix is beyond IID sub-Gaussian. To extend the region of random measurement matrix, an expectation propagation (EP)-related algorithm orthogonal AMP (OAMP) was proposed, which shares the same algorithm with EP, expectation consistent (EC), and vector AMP (VAMP). This paper aims at giving a review for those algorithms. We begin with the worst case, i.e. least absolute shrinkage and selection operator (LASSO) inference problem, and then give the detailed derivation of AMP derived from message passing. Also, in the Bayes-optimal setting, we give the Bayes-optimal AMP which has a slight difference from AMP for LASSO. In addition, we review some AMP-related algorithms: OAMP, VAMP, and Memory AMP (MAMP), which can be applied to more general random matrices.
翻译:标准线性回归的高度信号恢复是许多工程领域(如通信、压缩感测和图像处理)面临的一个关键挑战。Donoho \ textit{et al} 提出的大致传递信息(AMP)算法(AMP)算法(AMP)算法(AMP)算法(AMP)算法(AMP)算法(IID) 下Gausian随机区域。AMP的一个重要特征是,AMP的动态性能可以通过称为站级演进(SE)的标度方程式(AMP)充分预测。虽然AMP在IID sub-Gausian随机矩阵中是最佳的,但是当测量矩阵超出IID sub-Gausian时,AMP可能无法趋同。为了扩大随机测量矩阵区域,提出了一种与Bay-OMP(EP)相关的预期传播算法(OMP) 随机矩阵(OMP) 区域, 与EP(EC) 和矢量 AMP(VAMP (VMP MA) 相当的一个特征算法(VMP) 。本文的目的是对这些算法进行最坏的情况进行审查,我们从A 的直译测测测测测算和A 的O (LA- mass- missal- messal- mess) 的O) 也给了A 的O 直译测算法(L) 的O) 的O 上, 的O 的O 的直径(对A 直径(O) 的直径(L) 质) 质) 问题进行更给了A 。