Meta-learning can successfully acquire useful inductive biases from data. Yet, its generalization properties to unseen learning tasks are poorly understood. Particularly if the number of meta-training tasks is small, this raises concerns about overfitting. We provide a theoretical analysis using the PAC-Bayesian framework and derive novel generalization bounds for meta-learning. Using these bounds, we develop a class of PAC-optimal meta-learning algorithms with performance guarantees and a principled meta-level regularization. Unlike previous PAC-Bayesian meta-learners, our method results in a standard stochastic optimization problem which can be solved efficiently and scales well. When instantiating our PAC-optimal hyper-posterior (PACOH) with Gaussian processes and Bayesian Neural Networks as base learners, the resulting methods yield state-of-the-art performance, both in terms of predictive accuracy and the quality of uncertainty estimates. Thanks to their principled treatment of uncertainty, our meta-learners can also be successfully employed for sequential decision problems.


翻译:元化学习可以成功地从数据中获取有用的感化偏差。 然而,它的一般特性与隐性学习任务不易理解。 特别是如果元训练任务的数量很少, 则会引起对超称的担忧。 我们利用PAC- Bayesian框架提供理论分析,并为元化学习得出新的概括性界限。 利用这些界限, 我们开发了一类PAC- 最佳元学习算法, 具有性能保障和有原则的元水平规范。 与以往的PAC- Bayesian 元学习人不同, 我们的方法导致标准随机优化问题, 并且能够高效地解决, 比例相当。 当我们以高山进程和巴伊斯神经网络为基础学习者的PAC- 最优化性极性( PACOH) (PACOH) (PAC- Oper- Oper- Offical) (PAC- Offical) 时, 由此产生的方法在预测性精确性和不确定性估计质量方面产生最先进性能。 由于对不确定性进行有原则的处理, 我们的元学习者也可以成功地被运用于相近的处理。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年11月3日
【DeepMind-NeurIPS 2020】元训练代理实现Bayes-optimal代理
专知会员服务
11+阅读 · 2020年11月1日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员