Bipolar disorder is a mental disorder that causes periods of manic and depressive episodes. In this work, we classify recordings from Bipolar Disorder corpus that contain 7 different tasks, into hypomania, mania, and remission classes using only speech features. We perform our experiments on splitted tasks from the interviews. Best results achieved on the model trained with 6th and 7th tasks together gives 0.53 UAR (unweighted average recall) result which is higher than the baseline results of the corpus.
翻译:两极障碍是一种精神紊乱,引起狂躁和抑郁的时期。在这项工作中,我们将含有7种不同任务的双极分裂体的录音记录分类为低语、狂躁症和仅使用语言特征的消毒类。我们实验了与访谈分开的任务。在第六和第七种任务一起培训的模型上取得的最佳结果给出了0.53 UAR(未加权平均回忆)的结果,该结果高于该物质的基准结果。