Women are influential online, especially in image-based social media such as Twitter and Instagram. However, many in the network environment contain gender discrimination and aggressive information, which magnify gender stereotypes and gender inequality. Therefore, the filtering of illegal content such as gender discrimination is essential to maintain a healthy social network environment. In this paper, we describe the system developed by our team for SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification. More specifically, we introduce two novel system to analyze these posts: a multimodal multi-task learning architecture that combines Bertweet for text encoding with ResNet-18 for image representation, and a single-flow transformer structure which combines text embeddings from BERT-Embeddings and image embeddings from several different modules such as EfficientNet and ResNet. In this manner, we show that the information behind them can be properly revealed. Our approach achieves good performance on each of the two subtasks of the current competition, ranking 15th for Subtask A (0.746 macro F1-score), 11th for Subtask B (0.706 macro F1-score) while exceeding the official baseline results by high margins.
翻译:然而,许多网络环境中的信息都含有性别歧视和攻击性信息,这放大了性别陈规定型观念和性别不平等。因此,过滤性别歧视等非法内容对于维持一个健康的社会网络环境至关重要。在本文中,我们描述了我们的SemEval-2022任务5:多媒体自动雾感识别小组开发的系统。更具体地说,我们引入了两个新的系统来分析这些文章:一种是多式多任务多功能学习模式,将Bertweet的文本编码与ResNet-18的图像表示组合起来;另一种是单流变压器结构,将BERT-Embedings的文本嵌入和一些不同模块(例如高效网络和ResNet)的图像嵌入结合起来。我们以这种方式表明,它们背后的信息可以正确披露。我们的方法在目前竞争的两个子任务中取得了良好的表现,在Subtask A(0.746 宏观F1核心)排名第15位,在Subtask B(0.706 宏观F1核心)第11位(0.706),同时通过高基线超过官方基线结果。