Federated learning (FL) is a distributed model training paradigm that preserves clients' data privacy. It has gained tremendous attention from both academia and industry. FL hyper-parameters (e.g., the number of selected clients and the number of training passes) significantly affect the training overhead in terms of computation time, transmission time, computation load, and transmission load. However, the current practice of manually selecting FL hyper-parameters imposes a heavy burden on FL practitioners because applications have different training preferences. In this paper, we propose FedTune, an automatic FL hyper-parameter tuning algorithm tailored to applications' diverse system requirements in FL training. FedTune iteratively adjusts FL hyper-parameters during FL training and can be easily integrated into existing FL systems. Through extensive evaluations of FedTune for diverse applications and FL aggregation algorithms, we show that FedTune is lightweight and effective, achieving 8.48%-26.75% system overhead reduction compared to using fixed FL hyper-parameters. This paper assists FL practitioners in designing high-performance FL training solutions. The source code of FedTune is available at https://github.com/DataSysTech/FedTune.
翻译:联邦学习(FL)是一种分布式的培训模式,它保护客户的数据隐私,得到了学术界和行业的极大关注。FL超参数(例如,选定客户的数量和培训通行证的数量)在计算时间、传输时间、计算负荷和传输负荷方面对培训间接费用产生重大影响。然而,目前人工选择FL超参数的做法对FL从业人员造成沉重负担,因为应用程序具有不同的培训偏好。在本文中,我们提议FedTune(一种自动的FL超参数调算法),适合FL培训中的各种系统要求。FDTune在FL培训期间对FL超参数(例如,选定客户的数量和培训通行证的数量)进行迭代调整,并很容易纳入现有的FL系统。通过对FDTune多种应用和FL汇总算法的广泛评价,我们显示FDTune是轻而有效的,比固定的FL超参数降低了8.48%-26.75%的系统间接费用。本文协助FL开业者设计高性FL培训解决方案。FDTADTune/FTune的源码可在 http://https./FDtune/FDUTune/Tune/http://https.