In retrieval-based dialogue systems, a response selection model acts as a ranker to select the most appropriate response among several candidates. However, such selection models tend to rely on context-response content similarity, which makes models vulnerable to adversarial responses that are semantically similar but not relevant to the dialogue context. Recent studies have shown that leveraging these adversarial responses as negative training samples is useful for improving the discriminating power of the selection model. Nevertheless, collecting human-written adversarial responses is expensive, and existing synthesizing methods often have limited scalability. To overcome these limitations, this paper proposes a simple but efficient method for generating adversarial negative responses leveraging a large-scale language model. Experimental results on dialogue selection tasks show that our method outperforms other methods of synthesizing adversarial negative responses. These results suggest that our method can be an effective alternative to human annotators in generating adversarial responses. Our dataset and generation code is available at https://github.com/leenw23/generating-negatives-by-gpt3.


翻译:在检索式对话系统中,一个反应选择模式充当了在几个候选人中选择最适当反应的排位,然而,这种选择模式往往依赖上下反应内容的相似性,使模型容易受到对抗性反应的伤害,而对抗性反应在语义上是相似的,但与对话环境无关。最近的研究表明,利用这些对抗性反应作为负面培训样本,有助于改进选择模式的差别性力量。然而,收集人文对抗性反应的费用很高,而现有的合成方法往往具有有限的可伸缩性。为克服这些限制,本文件提出一种简单而有效的方法,利用大规模语言模式产生对抗性消极反应。关于对话选择任务的实验结果显示,我们的方法比其他方法更能综合对抗性对抗性否定反应的方法。这些结果表明,我们的方法可以有效地替代人类警告者产生对抗性反应的替代方法。我们的数据集和生成代码可在https://github.com/leenw23/producing-negativesbygppt3上查阅。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年12月20日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员