In this paper, a semi-automatic annotation of bacteria genera and species from DIBaS dataset is implemented using clustering and thresholding algorithms. A Deep learning model is trained to achieve the semantic segmentation and classification of the bacteria species. Classification accuracy of 95% is achieved. Deep learning models find tremendous applications in biomedical image processing. Automatic segmentation of bacteria from gram-stained microscopic images is essential to diagnose respiratory and urinary tract infections, detect cancers, etc. Deep learning will aid the biologists to get reliable results in less time. Additionally, a lot of human intervention can be reduced. This work can be helpful to detect bacteria from urinary smear images, sputum smear images, etc to diagnose urinary tract infections, tuberculosis, pneumonia, etc.
翻译:在本文中,利用集群和临界算法对DIBaS数据集的细菌基因和物种进行半自动说明; 培训深层学习模型,以实现细菌物种的语义分解和分类; 达到95%的分类准确度; 深层学习模型在生物医学图像处理中发现巨大的应用; 从克污染微粒图像中自动分离细菌对于诊断呼吸道和尿道感染、检测癌症等至关重要; 深层学习将有助于生物学家在较少的时间内取得可靠的结果。 此外,大量人类干预可以减少。 这项工作有助于检测尿道涂片、人造涂片图像等细菌,诊断尿道感染、肺结核、肺炎等。