项目名称: 纳米电化学生物传感器快速检测消化道肿瘤多药耐药基因的新方法研究

项目编号: No.21275028

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 林新华

作者单位: 福建医科大学

项目金额: 80万元

中文摘要: 消化道恶性肿瘤严重危害着人类健康,而肿瘤耐受性是消化道肿瘤治疗失败的主要原因。肿瘤细胞多药耐药的特异性生物标志物是多药耐药基因MDR1。通过检测 MDR1基因表达,可预测患者对化疗药物的敏感性和耐受性,科学选择合理的化疗方案和敏感的化疗药物,显著提高疗效和生存率。目前检测消化道恶性肿瘤耐药MDR1基因的方法包括荧光原位杂交、流式细胞术、RT-PCR技术等,它们分别存在特异性、敏感度不高、操作繁琐、检测费用高等问题,限制了在临床中的应用。本项目首次提出将纳米技术、酶联免疫分析技术与锁核酸探针技术有机结合,构建新型纳米电化学生物传感器,通过制备高特异性锁核酸生物分子探针,结合纳米粒子标记技术,建立灵敏、快速、简便经济的MDR1基因检测新方法,为尽快应用于临床肿瘤耐药基因检测提供研究基础,并为临床医生制定合理的个体化肿瘤化疗方案提供科学依据。因而本跨学科研究具有较突出的学术创新性和临床应用价值。

中文关键词: 纳米电化学生物传感器;多药耐药基因;消化道恶性肿瘤;纳米材料;分子探针

英文摘要: Gastrointestinal cancer endangers human health seriously, and the tolerability of cancer has become the primary reason which causes the failure in the gastrointestinal cancer therapy. The specific biological marker of cancer cell multidrug resistance is multidrug resistance gene MDR1. The sensitivity and tolerability of chemotherapeutics in patients can be predicted by the detection of MDR1 gene expression. Then the reasonable chemotherapy regimen and sensitive chemotherapy drugs can be chosen scientifically to improve curative effect and survival rate signally. Now, the major clinical testing methods include fluorescence in situ hybridization, flow cytometry, RT-PCR, and so on. But there are some limitations in these methods, such as poor specificity and sensitivity, fussy operation and high costs, which restrict clinical application. Novel nanoelectrochemical biosensor, which combines nanotechnology, biosensing technology and molecular hybridization technique, is first developed for sensitive rapid, simple and economical detection of multidrug resistance gene by our research group through design of high-specificity nanobiological probe connected with nanoparticle labeling technique. It would provide research foundation for clinical application and detection of other multidrug resistance genes in cancer. And it

英文关键词: Nano electrochemical biosensor;Multidrug resistance gene;Gastrointestinal tumor;Nanomaterial;Molecular probe

成为VIP会员查看完整内容
0

相关内容

医学图像关键点检测深度学习方法研究与挑战
专知会员服务
49+阅读 · 2022年4月10日
军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
66+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
102+阅读 · 2020年11月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关主题
相关VIP内容
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
49+阅读 · 2022年4月10日
军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
66+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
102+阅读 · 2020年11月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员