Lifelong localization in a given map is an essential capability for autonomous service robots. In this paper, we consider the task of long-term localization in a changing indoor environment given sparse CAD floor plans. The commonly used pre-built maps from the robot sensors may increase the cost and time of deployment. Furthermore, their detailed nature requires that they are updated when significant changes occur. We address the difficulty of localization when the correspondence between the map and the observations is low due to the sparsity of the CAD map and the changing environment. To overcome both challenges, we propose to exploit semantic cues that are commonly present in human-oriented spaces. These semantic cues can be detected using RGB cameras by utilizing object detection, and are matched against an easy-to-update, abstract semantic map. The semantic information is integrated into a Monte Carlo localization framework using a particle filter that operates on 2D LiDAR scans and camera data. We provide a long-term localization solution and a semantic map format, for environments that undergo changes to their interior structure and detailed geometric maps are not available. We evaluate our localization framework on multiple challenging indoor scenarios in an office environment, taken weeks apart. The experiments suggest that our approach is robust to structural changes and can run on an onboard computer. We released the open source implementation of our approach written in C++ together with a ROS wrapper.
翻译:在给定地图中永久定位是自动服务机器人的一种必要能力。 在本文中, 我们考虑在变化的室内环境中长期定位的任务, 原因是 CAD 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面图。 机器人传感器通常使用的预设地图可能会增加部署的成本和时间。 此外, 其详细性质要求当发生重大变化时, 需要更新这些地图。 当地图和观测结果之间的通信由于 CAD 地图的宽度和变化环境的广度而降低时, 我们解决了定位的难度。 为了克服这两个挑战, 我们建议利用 RGB 相机探测这些语义提示, 并使用 RGB 相机探测这些语义提示, 并匹配一个容易更新的、 抽象的语义地图。 语义信息被整合到蒙特卡洛 本地化框架中, 使用 2D LiDAR 扫描和相机数据操作的粒子过滤器。 我们提供了一个长期定位解决方案和语义地图格式, 用于内部结构结构结构结构结构结构结构结构结构结构结构图, 我们用一个系统平面平面平面平面平面平面平面平面平面平面平面平面, 。