In this paper, we consider an LQR design problem for distributed control systems. For large-scale distributed systems, finding a solution might be computationally demanding due to communications among agents. To this aim, we deal with LQR minimization problem with a regularization for sparse feedback matrix, which can lead to achieve the reduction of the communication links in the distributed control systems. For this work, we introduce a simple but efficient iterative algorithms - Iterative Shrinkage Thresholding Algorithm (ISTA) and Iterative Sparse Projection Algorithm (ISPA). They can give us a trade-off solution between LQR cost and sparsity level on feedback matrix. Moreover, in order to improve the speed of the proposed algorithms, we design deep neural network models based on the proposed iterative algorithms. Numerical experiments demonstrate that our algorithms can outperform the previous methods using the Alternating Direction Method of Multiplier (ADMM) [1] and the Gradient Support Pursuit (GraSP) [2], and their deep neural network models can improve the performance of the proposed algorithms in convergence speed.
翻译:在本文中,我们考虑了分布式控制系统LQR设计问题。 对于大规模分布式系统,由于代理商之间的通信,找到一个解决方案可能具有计算要求。为此,我们通过对稀疏反馈矩阵的规范化来解决LQR最小化问题,这可以导致减少分布式控制系统中的通信连接。对于这项工作,我们引入了一个简单而有效的迭代算法 — 迭代缩略图控Alegorithm (ISTA) 和 迭代式微缩投影 Algorithm (ISPA) [2] 。它们可以给我们在反馈矩阵的LQR 成本水平和广度水平之间找到一个权衡式解决方案。此外,为了提高拟议算法的速度,我们根据拟议的迭代算法设计了深线网络模型。 数字实验表明,我们的算法能够超过以前使用倍数调方向法[ADMMM] [1] 和渐变支持驱动法(GRASP) [2] 的方法,它们的深神经网络模型可以提高拟议算法的趋同速度的性。