Unsupervised image segmentation is an important task in many real-world scenarios where labelled data is of scarce availability. In this paper we propose a novel approach that harnesses recent advances in unsupervised learning using a combination of Mutual Information Maximization (MIM), Neural Superpixel Segmentation and Graph Neural Networks (GNNs) in an end-to-end manner, an approach that has not been explored yet. We take advantage of the compact representation of superpixels and combine it with GNNs in order to learn strong and semantically meaningful representations of images. Specifically, we show that our GNN based approach allows to model interactions between distant pixels in the image and serves as a strong prior to existing CNNs for an improved accuracy. Our experiments reveal both the qualitative and quantitative advantages of our approach compared to current state-of-the-art methods over four popular datasets.


翻译:在许多被贴上标签的数据难以获得的现实情景中,未经监督的图像分割是一个重要的任务。 在本文中,我们提出一种新的方法,利用以端对端方式结合相互信息最大化(MIM)、神经超像分解和图形神经网络(GNNS),利用无监督学习的最新进展,这一方法尚未得到探讨。我们利用超级像素的缩缩写,并将其与GNNs相结合,以便学习强有力和语义上有意义的图像表述。具体地说,我们基于GNN的方法可以模拟图像中遥远的像素之间的相互作用,并成为现有CNN之前的强大工具,以便提高准确性。我们的实验揭示了我们方法在质量和数量上与目前最先进的方法相比在四个流行数据集上的优势。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
15+阅读 · 2020年2月5日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员