This paper develops a decentralized approach to mobile sensor coverage by a multi-robot system. We consider a scenario where a team of robots with limited sensing range must position itself to effectively detect events of interest in a region characterized by areas of varying importance. Towards this end, we develop a decentralized control policy for the robots -- realized via a Graph Neural Network -- which uses inter-robot communication to leverage non-local information for control decisions. By explicitly sharing information between multi-hop neighbors, the decentralized controller achieves a higher quality of coverage when compared to classical approaches that do not communicate and leverage only local information available to each robot. Simulated experiments demonstrate the efficacy of multi-hop communication for multi-robot coverage and evaluate the scalability and transferability of the learning-based controllers.
翻译:本文开发了多机器人系统移动传感器覆盖的分散化办法。 我们考虑了一种设想方案,即一个遥感范围有限的机器人团队必须定位于有效探测不同重要区域感兴趣的事件。 为此,我们为机器人制定了分散化的控制政策 -- -- 通过图形神经网络实现 -- -- 使用机器人间通信来利用非本地信息来进行控制决策。通过多霍邻居之间明确共享信息,分散式控制器实现了更高的覆盖质量,而传统方法则不交流和利用每个机器人都可获得的本地信息。模拟实验显示了多霍通信对多机器人覆盖的效果,并评估了基于学习的控制器的可扩展性和可转移性。