Federated learning has received fast-growing interests from academia and industry to tackle the challenges of data hungriness and privacy in machine learning. A federated learning system can be viewed as a large-scale distributed system with different components and stakeholders as numerous client devices participate in federated learning. Designing a federated learning system requires software system design thinking apart from machine learning knowledge. Although much effort has been put into federated learning from the machine learning technique aspects, the software architecture design concerns in building federated learning systems have been largely ignored. Therefore, in this paper, we present a collection of architectural patterns to deal with the design challenges of federated learning systems. Architectural patterns present reusable solutions to a commonly occurring problem within a given context during software architecture design. The presented patterns are based on the results of a systematic literature review and include three client management patterns, four model management patterns, three model training patterns, and four model aggregation patterns. The patterns are associated to the particular state transitions in a federated learning model lifecycle, serving as a guidance for effective use of the patterns in the design of federated learning systems.


翻译:联邦学习得到了学术界和工业界迅速增长的兴趣,以应对机器学习中的数据饥饿和隐私的挑战; 联合会学习系统可被视为一个大型分布式系统,由不同组成部分和利益攸关方组成,因为许多客户设备都参与联合会学习; 设计联合会学习系统需要软件系统设计,除了机械学习知识之外,还需要有软件系统设计思维; 尽管已经作出很大努力,从机器学习技术方面学习联合会式学习,但软件结构设计对建立联合学习系统的关切基本上被忽视; 因此,在本文件中,我们提出了一套建筑模式,以应对联合学习系统的设计挑战; 建筑模式为在软件结构设计期间某个特定背景下常见的问题提供了可再使用的解决办法; 提出的模式基于系统文献审查的结果,包括三种客户管理模式、四个模式管理模式、三个示范培训模式和四个模型汇总模式。 这些模式与联邦学习模型生命周期中特定的国家过渡有关,是有效利用联邦学习系统设计模式的指导。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月19日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年8月19日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
18+阅读 · 2019年1月16日
Top
微信扫码咨询专知VIP会员