Unmanned aerial vehicles (UAVs), or say drones, are envisioned to support extensive applications in next-generation wireless networks in both civil and military fields. Empowering UAVs networks intelligence by artificial intelligence (AI) especially machine learning (ML) techniques is inevitable and appealing to enable the aforementioned applications. To solve the problems of traditional cloud-centric ML for UAV networks such as privacy concern, unacceptable latency, and resource burden, a distributed ML technique, \textit(i.e.), federated learning (FL), has been recently proposed to enable multiple UAVs to collaboratively train ML model without letting out raw data. However, almost all existing FL paradigms are still centralized, \textit{i.e.}, a central entity is in charge of ML model aggregation and fusion over the whole network, which could result in the issue of a single point of failure and are inappropriate to UAV networks with both unreliable nodes and links. Thus motivated, in this article, we propose a novel architecture called DFL-UN (\underline{D}ecentralized \underline{F}ederated \underline{L}earning for \underline{U}AV \underline{N}etworks), which enables FL within UAV networks without a central entity. We also conduct a preliminary simulation study to validate the feasibility and effectiveness of the DFL-UN architecture. Finally, we discuss the main challenges and potential research directions in the DFL-UN.


翻译:无人驾驶航空飞行器(UAVs)或无人驾驶飞机(指无人机)的构想是,支持民用和军事领域下一代无线网络的广泛应用。通过人工智能(AI)赋予无人驾驶航空飞行器网络情报能力,特别是机器学习(ML)技术,是不可避免的,而且有利于上述应用。为了解决无人驾驶航空飞行器网络传统的以云为中心的ML问题,如隐私关切、不可接受的潜伏度和资源负担,最近提议采用分布式ML技术,\textit(e),联合学习(FLF),以使多个无人驾驶航空飞行器能够合作培训ML模型,而无需释放原始数据。然而,几乎所有现有的FL(AI)模式仍然集中,\textit{i.e.},一个中央实体负责ML模型集成,这可能导致单一的失败点,并且不适合UAV网络的不可靠的节点和链接。因此,我们提议在本文中,建立一个名为DLFL(下)中央(UN)核心{中央{中央{中央{联合国}核心{核心}(AFL_CL)研究中,也使得AFFL(中央)系统)内部的网络具有可行性。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
123+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
2+阅读 · 2021年10月15日
Advances and Open Problems in Federated Learning
Arxiv
17+阅读 · 2019年12月10日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员