We consider convex relaxations for recovering low-rank tensors based on constrained minimization over a ball induced by the tensor nuclear norm, recently introduced in \cite{tensor_tSVD}. We build on a recent line of results that considered convex relaxations for the recovery of low-rank matrices and established that under a strict complementarity condition (SC), both the convergence rate and per-iteration runtime of standard gradient methods may improve dramatically. We develop the appropriate strict complementarity condition for the tensor nuclear norm ball and obtain the following main results under this condition: 1. When the objective to minimize is of the form $f(\mX)=g(\mA\mX)+\langle{\mC,\mX}\rangle$ , where $g$ is strongly convex and $\mA$ is a linear map (e.g., least squares), a quadratic growth bound holds, which implies linear convergence rates for standard projected gradient methods, despite the fact that $f$ need not be strongly convex. 2. For a smooth objective function, when initialized in certain proximity of an optimal solution which satisfies SC, standard projected gradient methods only require SVD computations (for projecting onto the tensor nuclear norm ball) of rank that matches the tubal rank of the optimal solution. In particular, when the tubal rank is constant, this implies nearly linear (in the size of the tensor) runtime per iteration, as opposed to super linear without further assumptions. 3. For a nonsmooth objective function which admits a popular smooth saddle-point formulation, we derive similar results to the latter for the well known extragradient method. An additional contribution which may be of independent interest, is the rigorous extension of many basic results regarding tensors of arbitrary order, which were previously obtained only for third-order tensors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

张量核范数是其奇异值的总和,由张量本身的奇异值分解(SVD)提供。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员